Search For Your Exact Product Here
Product Description
The Helmholtz coil is a device composed of two sets of identical circular coils placed parallel to the same axis and run current in the same direction to generate a uniform magnetic field. Helmholtz coils can be customized by through adjusting the coil diameter, required magnetic field, working time, structural requirements, and dissipation requirements (air cooling or water cooling).Product Description
The three-axis Helmholtz coil is composed of 3 pairs of Helmholtz coils arranged along three orthogonal axes, which can simultaneously generate uniform magnetic fields in the direction of x-, y-, or z-axis.Helmholtz coils can be customized by through adjusting the coil diameter, required magnetic field, working time, structural requirements, and dissipation requirements (air cooling or water cooling).The three-axis Helmholtz coil is composed of 3 pairs of Helmholtz coils arranged along three orthogonal axes, which can simultaneously generate uniform magnetic fields in the direction of x-, y-, or z-axis.Helmholtz coils can be customized by through adjusting the coil diameter, required magnetic field, working time, structural requirements, and dissipation requirements (air cooling or water cooling).
The static magnetic field active shielding system can offset the magnetic field fluctuations of the geomagnetic field in real time, thereby generating a 10nT zero magnetic environment in the geomagnetic environment. For example, the gradient magnetic field of 1nT or 0.1nT can be generated in the shielding room or shielding cylinder, the system can also generate any set magnetic field in three-dimensional components for scientific experiments and simulation of geomagnetic changes.
Halbach permanent magnet is a magnetic ring made from a specially arranged array of permanent magnets, capable of generating a strong one-sided magnetic field inside or outside of the ring, while there's almost no magnetic field on the other side. This design significantly improves magnetic field utilization efficiency and is widely used in high-performance magnetic devices such as particle accelerators, magnetic resonance imaging (MRI), and high-precision magnetic measurement equipment.
The Helmholtz coil is a device composed of two sets of identical circular coils placed parallel to the same axis and run current in the same direction to generate a uniform magnetic field. Helmholtz coils can be customized by through adjusting the coil diameter, required magnetic field, working time, structural requirements, and dissipation requirements (air cooling or water cooling).
Single-Pole Electromagnet is an open loop electromagnet consisting of a single pole cap. The main advantages of this electromagnet are open structure and large operating space This electromagnets are equipped with a pair of standard replaceable pole caps made of purity iron, which can be replaced to suit to individual experiment requirements. The pure-iron structure is suitable for coils heat dissipation, and the option of cooling water system is also available for extend the operating time.
The dynamic magnetic field shielding effect can reach a higher level (better than 5 nT). By using AC current to generate a magnetic field, it has higher DC and AC magnetic field shielding efficiency, more accurate trajectory tracking function, larger range, and higher response speed. The ability to generate magnetic fields with three components X, Y, and Z within the range of (0-100000 nT) magnetic fields can be precise up to 5 nT, making products and experiments in scientific research, military industry, and medical care extremely meaningful and widely used.
Flux-gate magnetometer is a that accurately measures weak static and low-frequency vector magnetic fields,which has the characteristics of high stability, high linearity, high-precision and full digitization. Compared with magnetic field measurement instruments based on Hall effect principle or magnetoresistance effect principle, it is the best choice for measuring weak magnetic fields. It has digital and analog signal output, and a unique CAN bus network interface suitable for multi array magnetic field testing. It is widely used in scientific research, military industry, aerospace and other departments
This power supply is a high stability bipolar constant current power supply (smooth zero crossing commutation without delay). The power supply adopts a linear power supply structure, with high output current stability, low ripple and noise. The output current of the power supply can be continuously changed between positive and negative rated maximum current, and the current is smooth and continuous zero, which can generate a smooth and stable magnetic field in the electromagnet or coil. With our high precision Gauss meter and probe (optional), the power supply can operate in magnetic field mode. The magnetic field value can be directly set in magnetic field mode,The power supply will adjust the output current to make the electromagnet quickly reach the set magnetic field, convenient and fast, and the magnetic field is stable.It can control the field independently or scan the magnetic field continuously. The current mode and magnetic field mode can be switched at any time according to the need, and the operation is flexible.
High Homogeneity coil, which is composed of multi-ring coils arranged along the axial direction, includes the common coils such as Barker Coil, Braunbek Coil, Maxwell Coil, Rubens Coil, and Magnetic-Moment-Free coil. Compared with the Helmholtz coil, the combined coil features the better magnetic field homogeneity under the same diameter, the higher homogeneity and larger homogeneity volume in the effective space, and is suitable for the high-precision and large-range magnetic field needs. This design can meet any parameter customization requirements.
The field air gap is adjustable in both directions, with a single yoke structure and a horizontal magnetic field direction; Standing upright and having a wide operating space, it is convenient for taking and placing samples and combining with other equipment, making it one of the most common electromagnetic magnets in magnetic research. Used for Hall effect research and magnetoresistance effect research.
The field air gap is adjustable in both directions, with a single yoke structure and a horizontal magnetic field direction; Standing upright and having a wide operating space, it is convenient for taking and placing samples and combining with other equipment, making it one of the most common electromagnetic magnets in magnetic research. Used for Hall effect research and magnetoresistance effect research.
The field air gap is adjustable in both directions, with a single yoke structure and a horizontal magnetic field direction; Standing upright and having a wide operating space, it is convenient for taking and placing samples and combining with other equipment, making it one of the most common electromagnetic magnets in magnetic research. Used for Hall effect research and magnetoresistance effect research.
The field air gap is adjustable in both directions, with a single yoke structure and a horizontal magnetic field direction; Standing upright and having a wide operating space, it is convenient for taking and placing samples and combining with other equipment, making it one of the most common electromagnetic magnets in magnetic research. Used for Hall effect research and magnetoresistance effect research.
The field air gap is adjustable in both directions, with a single yoke structure and a horizontal magnetic field direction; Standing upright and having a wide operating space, it is convenient for taking and placing samples and combining with other equipment, making it one of the most common electromagnetic magnets in magnetic research. Used for Hall effect research and magnetoresistance effect research.
The field air gap is adjustable in both directions, with a single yoke structure and a horizontal magnetic field direction; Standing upright and having a wide operating space, it is convenient for taking and placing samples and combining with other equipment, making it one of the most common electromagnetic magnets in magnetic research. Used for Hall effect research and magnetoresistance effect research.
The field air gap is adjustable in both directions, with a single yoke structure and a horizontal magnetic field direction; Standing upright and having a wide operating space, it is convenient for taking and placing samples and combining with other equipment, making it one of the most common electromagnetic magnets in magnetic research. Used for Hall effect research and magnetoresistance effect research.
The field air gap is adjustable in both directions, with a single yoke structure and a horizontal magnetic field direction; Standing upright and having a wide operating space, it is convenient for taking and placing samples and combining with other equipment, making it one of the most common electromagnetic magnets in magnetic research. Used for Hall effect research and magnetoresistance effect research.
The field air gap is adjustable in both directions, with a single yoke structure and a horizontal magnetic field direction; Standing upright and having a wide operating space, it is convenient for taking and placing samples and combining with other equipment, making it one of the most common electromagnetic magnets in magnetic research. Used for Hall effect research and magnetoresistance effect research.
We take your privacy very seriously and when you visit our website, please agree to all cookies used.