Choose The One That Suits Your Needs Measurement System

  • HALL EFFECT MEASUREMENT SYSTEM

    HALL EFFECT MEASUREMENT SYSTEM

    Product Descriptions

    HALL EFFECT MEASUREMENT SYSTEM is used to measure the important parameters of Semiconductor Materials such as Carrier Concentration, Mobility, Resistivity, and Hall Coefficient, and so on. These parameters must be grasped and controlled in advance in order to understand the electrical characteristics of semiconductor materials. Therefore, the Hall Effect Measurement System is an indispensable tool for understanding and studying the electrical characteristics of Semiconductor Devices and Semiconductor Materials. The experimental results are automatically calculated by the software, and the Bulk Carrier Concentration, Sheet Carrier Concentration, Mobility, Resistivity, Hall Coefficient, Magneto-Resistance, and other parameters can be obtained at the same time.
    Learn More
  • The static geomagnetic active shielding system

    The static geomagnetic active shielding system

    Product Description

    The static magnetic field active shielding system can offset the magnetic field fluctuations of the geomagnetic field in real time, thereby generating a 10nT zero magnetic environment in the geomagnetic environment. For example, the gradient magnetic field of 1nT or 0.1nT can be generated in the shielding room or shielding cylinder, the system can also generate any set magnetic field in three-dimensional components for scientific experiments and simulation of geomagnetic changes.
    Learn More
  • The dynamic magnetic field active geomagnetic shielding system

    The dynamic magnetic field active geomagnetic shielding system

    Product Descriptions

    The dynamic magnetic field shielding effect can reach a higher level (better than 5 nT). By using AC current to generate a magnetic field, it has higher DC and AC magnetic field shielding efficiency, more accurate trajectory tracking function, larger range, and higher response speed. The ability to generate magnetic fields with three components X, Y, and Z within the range of (0-100000 nT) magnetic fields can be precise up to 5 nT, making products and experiments in scientific research, military industry, and medical care extremely meaningful and widely used.
    Learn More

Learn More About Our Products

Measurement SystemFAQs
What is an electromagnet?

The field air gap is adjustable in both directions, with a single yoke structure and a horizontal magnetic field direction; Standing upright and having a wide operating space, it is convenient for taking and placing samples and combining with other equipment, making it one of the most common electromagnetic magnets in magnetic research. Used for Hall effect research and magnetoresistance effect research.

What is an electromagnet used for?

The field air gap is adjustable in both directions, with a single yoke structure and a horizontal magnetic field direction; Standing upright and having a wide operating space, it is convenient for taking and placing samples and combining with other equipment, making it one of the most common electromagnetic magnets in magnetic research. Used for Hall effect research and magnetoresistance effect research.

How does an electromagnet work?

The field air gap is adjustable in both directions, with a single yoke structure and a horizontal magnetic field direction; Standing upright and having a wide operating space, it is convenient for taking and placing samples and combining with other equipment, making it one of the most common electromagnetic magnets in magnetic research. Used for Hall effect research and magnetoresistance effect research.

What is the function of an electromagnet?

The field air gap is adjustable in both directions, with a single yoke structure and a horizontal magnetic field direction; Standing upright and having a wide operating space, it is convenient for taking and placing samples and combining with other equipment, making it one of the most common electromagnetic magnets in magnetic research. Used for Hall effect research and magnetoresistance effect research.

What are the application scenarios of electromagnets?

The field air gap is adjustable in both directions, with a single yoke structure and a horizontal magnetic field direction; Standing upright and having a wide operating space, it is convenient for taking and placing samples and combining with other equipment, making it one of the most common electromagnetic magnets in magnetic research. Used for Hall effect research and magnetoresistance effect research.

How to choose an electromagnet?

The field air gap is adjustable in both directions, with a single yoke structure and a horizontal magnetic field direction; Standing upright and having a wide operating space, it is convenient for taking and placing samples and combining with other equipment, making it one of the most common electromagnetic magnets in magnetic research. Used for Hall effect research and magnetoresistance effect research.

What are the models of electromagnets?

The field air gap is adjustable in both directions, with a single yoke structure and a horizontal magnetic field direction; Standing upright and having a wide operating space, it is convenient for taking and placing samples and combining with other equipment, making it one of the most common electromagnetic magnets in magnetic research. Used for Hall effect research and magnetoresistance effect research.

What are the commonly used places for electromagnets?

The field air gap is adjustable in both directions, with a single yoke structure and a horizontal magnetic field direction; Standing upright and having a wide operating space, it is convenient for taking and placing samples and combining with other equipment, making it one of the most common electromagnetic magnets in magnetic research. Used for Hall effect research and magnetoresistance effect research.

Who frequently uses electromagnets?

The field air gap is adjustable in both directions, with a single yoke structure and a horizontal magnetic field direction; Standing upright and having a wide operating space, it is convenient for taking and placing samples and combining with other equipment, making it one of the most common electromagnetic magnets in magnetic research. Used for Hall effect research and magnetoresistance effect research.

We take your privacy very seriously and when you visit our website, please agree to all cookies used.